organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

5-Methyl-2-pyridone

Shulin Mao,* Luo Yanghui and Pan Meiling

Ordered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China Correspondence e-mail: chmsunbw@seu.edu.cn

Received 7 August 2011; accepted 17 August 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.054; wR factor = 0.163; data-to-parameter ratio = 18.8.

The crystal structure of the title compound, C_6H_7NO , is stabilized by intermolecular $N-H\cdots O$ hydrogen bonds, resulting in inversion dimers. The structure is further consolidated by weak $C-H\cdots O$ hydrogen bonds.

Related literature

For related structures, see: Boris-Marko et al. (2008); Vovk et al. (2003).

Experimental

Crystal data

 C_6H_7NO $M_r = 109.13$ Monoclinic, C2/c

<i>a</i> =	12.965	(3)
b =	9.7154	(19
<i>c</i> =	10.908	(2)

$\beta = 118.96 \ (3)^{\circ}$
$V = 1202.3 (4) \text{ Å}^3$
Z = 8
Mo $K\alpha$ radiation

Data collection

Rigaku SCXmini diffractometer Absorption correction: multi-scan (*CrystalClear*; Rigaku, 2005) $T_{\rm min} = 0.977, T_{\rm max} = 0.984$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.054$ $wR(F^2) = 0.163$ S = 0.991369 reflections

 Table 1

 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1-H1A\cdotsO1^{i}$	0.86	1.94	2.800 (2)	173
$C3-H3A\cdots O1^{ii}$	0.93	2.46	3.334 (3)	157
$C5 - H54 \cdots O1^{iii}$	0.93	2 33	3 260 (3)	178

 $\mu = 0.08 \text{ mm}^{-1}$ T = 293 K

 $R_{\rm int} = 0.049$

73 parameters

 $\Delta \rho_{\text{max}} = 0.12 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.17 \text{ e } \text{\AA}^{-3}$

 $0.30 \times 0.23 \times 0.20$ mm

5961 measured reflections

1369 independent reflections

670 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

Symmetry codes: (i) $-x + \frac{1}{2}, -y + \frac{3}{2}, -z$; (ii) $x, -y + 2, z + \frac{1}{2}$; (iii) $x + \frac{1}{2}, -y + \frac{3}{2}, z + \frac{1}{2}$.

Data collection: *CrystalClear* (Rigaku, 2005); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg & Putz, 2005); software used to prepare material for publication: *SHELXL97*.

This work was supported by the National Natural Science Foundation of China (Project 20671019)

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2442).

References

Boris-Marko, K., Popović, Z., Pavlović, G. & Rajić-Linarić, M. (2008). J. Mol. Struct. 882, 47–55.

Brandenburg, K. & Putz, H. (2005). *DIAMOND*. Crystal Impact. GbR, Bonn, Germany.

Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Vovk, T. V., Kovalchukova, O. V., Zaitsev, B. E., Strashnova, S. B., Belskii, V. K. & Stash, A. L. (2003). Koord. Khim. 29, 312–314. supplementary materials

Acta Cryst. (2011). E67, o2440 [doi:10.1107/S1600536811033484]

5-Methyl-2-pyridone

S. Mao, L. Yanghui and P. Meiling

Comment

The title compound is characterized by an enol-keto tautomerism due to the labile hydrogen atom of OH-group in α -position to the basic pyridine N atom which can easily migrate to N atom (Boris-Marko *et al.*, 2008) resulting in a zwitterionic molecule (Fig. 1).

The O1 and C6 atoms located on the pyridine ring are conplanar with the ring, deviating by 0.0.15 (3) and 0.35 (4) Å, respectively, from the ring plane, The crystal structure is stabilized by intermolecular N—H···O hydrogen bonds and further consolidated by C—H···O interactions (Fig.e 2 and Tab. 1).

Experimental

To a solution of the title compounde (0.2 g) in acetone (2 ml) and ethanol (10 ml) was added was prepared by stirred at room temperature and then placed in a dark place. Colourless single crystals suitable for X-ray diffraction study were obtained by slow evaporation of the solution over a period of 8 d.

Refinement

Positional parameters of all H atoms were calculated geometrically and refined using a riding model, with N–H = 0.086 Å and C—H = 0.93 and 0,96 Å for aryl and methyl type H-atoms, respectively, and $U_{iso}(H) = 1.2 U_{eq}$ (N/C-aryl) or 1.5 U_{eq} (C-methyl).

Figures

Fig. 1. An ORTEP view of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2. Unit cell packing of the title compound showing H-bonding interactions.

5-Methyl-2-pyridone

Crystal data C₆H₇NO $M_r = 109.13$ Monoclinic, C2/c Hall symbol: -C 2yc a = 12.965 (3) Å *b* = 9.7154 (19) Å c = 10.908 (2) Å $\beta = 118.96 \ (3)^{\circ}$ $V = 1202.3 (4) \text{ Å}^3$ Z = 8

Data collection

Rigaku SCXmini diffractometer	1369 independent reflection
Radiation source: fine-focus sealed tube	670 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.049$
Detector resolution: 13.6612 pixels mm ⁻¹	$\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 3.6^{\circ}$
CCD_Profile_fitting scans	$h = -16 \rightarrow 16$
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005)	$k = -12 \rightarrow 12$
$T_{\min} = 0.977, \ T_{\max} = 0.984$	$l = -14 \rightarrow 14$
5961 measured reflections	

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.054$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.163$	H-atom parameters constrained
<i>S</i> = 0.99	$w = 1/[\sigma^2(F_0^2) + (0.0734P)^2]$ where $P = (F_0^2 + 2F_c^2)/3$
1369 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
73 parameters	$\Delta \rho_{max} = 0.12 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.17 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations

F(000) = 464 $D_{\rm x} = 1.206 {\rm Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073$ Å Cell parameters from 1369 reflections $\theta = 3.6 - 27.5^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$ T = 293 KPrism, colourless $0.30 \times 0.23 \times 0.20 \text{ mm}$

IS I) between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
N1	0.28530 (13)	0.79540 (16)	0.17990 (16)	0.0616 (5)
H1A	0.3148	0.7521	0.1353	0.074*
01	0.11700 (11)	0.82537 (15)	-0.02634 (14)	0.0730 (5)
C1	0.17371 (17)	0.8437 (2)	0.1049 (2)	0.0600 (6)
C2	0.13100 (19)	0.9133 (2)	0.1852 (2)	0.0718 (7)
H2A	0.0549	0.9488	0.1410	0.086*
C5	0.35432 (18)	0.8107 (2)	0.3216 (2)	0.0672 (6)
H5A	0.4300	0.7740	0.3655	0.081*
C4	0.3147 (2)	0.8781 (2)	0.3988 (2)	0.0665 (6)
C3	0.1989 (2)	0.9291 (2)	0.3250 (2)	0.0750 (7)
H3A	0.1679	0.9755	0.3743	0.090*
C6	0.3897 (2)	0.8989 (2)	0.5532 (3)	0.0978 (9)
H6A	0.4652	0.8566	0.5840	0.147*
H6B	0.3520	0.8578	0.6013	0.147*
H6C	0.4000	0.9956	0.5734	0.147*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0493 (10)	0.0718 (12)	0.0626 (11)	0.0060 (8)	0.0263 (9)	-0.0035 (8)
01	0.0544 (9)	0.1007 (12)	0.0615 (11)	0.0047 (7)	0.0262 (8)	0.0016 (8)
C1	0.0469 (12)	0.0662 (13)	0.0683 (15)	0.0002 (9)	0.0290 (12)	0.0079 (11)
C2	0.0635 (13)	0.0820 (16)	0.0773 (17)	0.0145 (11)	0.0401 (14)	0.0034 (12)
C5	0.0574 (13)	0.0666 (14)	0.0704 (15)	-0.0003 (10)	0.0252 (12)	-0.0006 (11)
C4	0.0713 (15)	0.0644 (14)	0.0624 (15)	-0.0024 (11)	0.0312 (13)	-0.0048 (11)
C3	0.0834 (17)	0.0739 (15)	0.0807 (18)	0.0098 (12)	0.0500 (15)	-0.0020 (12)
C6	0.109 (2)	0.102 (2)	0.0722 (18)	-0.0037 (14)	0.0354 (17)	-0.0110 (13)

Geometric parameters (Å, °)

N1-C1	1.355 (2)	С5—Н5А	0.9300
N1—C5	1.368 (2)	C4—C3	1.406 (3)
N1—H1A	0.8600	C4—C6	1.496 (3)
01—C1	1.266 (2)	С3—НЗА	0.9300
C1—C2	1.414 (3)	C6—H6A	0.9600
C2—C3	1.351 (3)	С6—Н6В	0.9600
C2—H2A	0.9300	С6—Н6С	0.9600
C5—C4	1.350 (3)		

supplementary materials

C1—N1—C5	124.56 (18)	C5—C4—C3	115.9 (2)
C1—N1—H1A	117.7	C5—C4—C6	122.1 (2)
C5—N1—H1A	117.7	C3—C4—C6	122.0 (2)
O1—C1—N1	119.97 (19)	C2—C3—C4	122.6 (2)
O1—C1—C2	125.48 (19)	С2—С3—Н3А	118.7
N1—C1—C2	114.55 (19)	С4—С3—Н3А	118.7
C3—C2—C1	121.1 (2)	C4—C6—H6A	109.5
C3—C2—H2A	119.4	C4—C6—H6B	109.5
C1—C2—H2A	119.4	H6A—C6—H6B	109.5
C4—C5—N1	121.30 (19)	C4—C6—H6C	109.5
C4—C5—H5A	119.3	H6A—C6—H6C	109.5
N1—C5—H5A	119.3	Н6В—С6—Н6С	109.5

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D\!\!-\!\!\mathrm{H}^{\ldots}\!A$
N1—H1A···O1 ⁱ	0.86	1.94	2.800 (2)	173
C3—H3A···O1 ⁱⁱ	0.93	2.46	3.334 (3)	157
C5—H5A…O1 ⁱⁱⁱ	0.93	2.33	3.260 (3)	178

Symmetry codes: (i) -x+1/2, -y+3/2, -z; (ii) x, -y+2, z+1/2; (iii) x+1/2, -y+3/2, z+1/2.

Fig. 1

Fig. 2

